Enormous progress is observed in the field of modeling and simulation of fluid dynamical processes. Reasons for this can be found in substantial innovations in the area of methods and algorithms, as well as in the fast development of hardware technology. As a result, for many technical and scientific problems, the numerical flow simulation has established itself as an equal partner to experiment and theory.

By optimizing the software performance, higher precision, quality of visualization and calculation speed can be achieved. The enhanced performance can cope with the demand for simulations in the fields of climate, energy, health and product development.

A major drawback can be seen in the fact that most software tools are based on simplified models since a rigorous flow simulation of socalled real world problems are enormous.

SKALB focuses therefore on the development of improved methods in particular with respect to the efficient use of hardware resources.

The Lattice-Boltzmann method is the core. It was suggested in the late 1980s for the numerical flow simulation and is based on strongly simplified particle micro dynamics. Due to the internal structure (low memory and computational demand per cell) the method is in particular suited for the simulation of flows in complex geometries.