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The lattice Boltzmann method
 Explicit, fully discrete Boltzmann 

equation with BGK collision operator
 Physical discretization: D3Q19
 Push or Pull optimized layout
 Fullway/halfway bounce-back for

obstacle treatment/boundaryobstac e t eat e t/bou da y
condition

PUSH PULLPUSH

float / double f(0:xMax+1,0:yMax+1,0:zMax+1,0:18,0:1)

if( fluidcell(x y z) ) then

PULL

if( fluidcell(x y z) ) thenif( fluidcell(x,y,z) ) then
LOAD f(x,y,z, 0:18,t)
Relaxation (complex computations)
SAVE f(x  ,y  ,z  , 0,t+1)
SAVE f(x+1,y+1,z , 1,t+1)

if( fluidcell(x,y,z) ) then
LOAD f(x  ,y  ,z  , 0,t)
LOAD f(x+1,y+1,z  , 1,t)
LOAD f(x  ,y+1,z  , 2,t)
LOAD f(x-1,y+1,z  , 3,t)SAVE f(x+1,y+1,z  , 1,t+1)

SAVE f(x  ,y+1,z  , 2,t+1)
SAVE f(x-1,y+1,z  , 3,t+1)
…
SAVE f(x  ,y-1,z-1,18,t+1) 

( ,y , , , )
…
LOAD f(x  ,y-1,z-1,18,t) 
Relaxation (complex computations)
SAVE f(x,y,z, 0:18,t+1)
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endif
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Motivation

 Why LBM  Easy to parallelize

 Why GPUs and CPUs: Why GPUs and CPUs:

GPUs currently offer the highest peak performancey g p p
CPUs are available anyway on any GPU node

 Why parallel: 
Parallelism will be the main contributor to future performance gain, and not 

single processor enhancementsg p
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Architectures

NVIDIA GT200 
 30 Multiprocessors (MP); each with:

 8 processors SP driven by :
Si l I t ti M lti l D t (SIMD)

INTEL Xeon (node)
 4 or 6 (8) cores per socket
 Up to 8 or 12 (16) SMT threads per socket

Single Instruction Multiple Data (SIMD)
Single Instruction Multiple Thread (SIMT)

 Explicit in-order architecture
 16384 Registers

 8 MB L3 cache 
 Clock rates up to 3.33 GHz

g
 16 KB of local on-chip memory

(shared memory)

 clock rate of 1.4 GHz 
1000 GFLOP/s (single precision
84     GFLOP/s (double precision)

 Up to 1 5 GB of global memory (DRAM)

200 GFLOP/s (single precision)
100 GFLOP/s (double precision)

 Up to 1.5 GB of global memory (DRAM) 
 1160 MHz DDR
 512 bit bus
 Global gather/scatter possible watch the latency

Memory:
 3x 1333 MHz DDR
 64 bit bus

Global gather/scatter possible watch the latency
 148.6 GB/s  bandwidth
 16 GB/s PCIe 2.0 x16 interface

(bidirectional)

 61 GB/s peak bandwidth
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Widely applicable LB from Erlangen (WaLBerla) 

Developed at  the 
Chair of System y
Simulation 
University of 
Erlangen -
Nurembergg
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Widely applicable LB from Erlangen (WaLBerla) 

 Patch and Block based domain decomposition

 Block contains Simulation data and Meta data 
e.g. for parallelization, advanced models

 Block can be algorithm or 
architecture specificarchitecture specific

 All Blocks are equal in spatial
dimensions

 MPI processes can have one MPI processes can have one 
or multiple blocks
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Heterogeneous LBM

After each iteration boundary data

Copy to Buffers on CPU and GPU

After each iteration, boundary data 
is copied to Communication Buffers
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Buffer swap on GPU

Local Communication Buffers 
are only swapped.are only swapped. 
No Copy is done!
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Transfer of buffers to the host

Data of GPU processes is 
transferred to the Hosttransferred to the Host
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Transfer of buffers to the host

Buffers are transferred/received   
to/from other hoststo/from other hosts
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Pure kernel (SP), no PCIe/IB transfer

 Maximum performance starting at 50x50x50

 Fluctuations due to different thread numbers and influence of Fluctuations due to different thread numbers and influence of
alignment

 Blocks influence
kernel
Domains < 200x200x200 

 Comparison:
Xeon Node ~100 MLUPS

 LUPS:
Lattice updates per second
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Kernel with boundary transfer (SP), no IB

 Maximum performance starting at 200x200x200 
(64 times more than pure kernel (50x50x50)!!)

 Blocks influence
kernel with any
domainsi edomainsize

 28% is lost for 6428% is lost for 64 
blocks

Why?
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Time measurements of kernel with 1 and 64 blocks

 Domains > 250^3  about  50% of execution time is spent in non-
kernel parts  

 Kernel execution time is constant no matter  how much blocks are 
used

 Domains < 150^3
non-kernel partnon kernel part 
becomes dominant
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Weak scaling GPU per Node performance

 Weak scaling works as expected
 Initial performance drop from one to two cards per node

 Up to 16 GFLUPS  
max. performance

H f d d t d i iHuge performance drop due to domain size
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Strong Scaling GPU per Node performance

 Loss of 64% in SP on 30 Nodes (60 GPUs)

Loss of 75% in DP on 30 Nodes (60 GPUs) Loss of 75% in DP on 30 Nodes (60 GPUs)

66%

46%
Up to 7 GFLUPS in SP Up to 137  Intel Xeon nodes necessary!

U t 1275 Bl G /P d !

35%

67%

About 3 GFLUPS in DPUp to 70  Intel Xeon nodes necessary!

Up to 1275   BlueGene/P nodes necessary!

About 3 GFLUPS in DPp y
Up to 750   BlueGene/P nodes necessary!
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Outlook 

 Implement grid refinement

 Implement dynamic load balancing for heterogeneous 
computations

static load Balancing already done:

90 nodes: 60 GPUs and 660 CPUs: 17.8 GFLUPS
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Strong Scaling GPU

 Up to 7 GFLUPS in SP and nearly 3 GFLUPS in DP on 60 GPUs

 Communication bound starting at 16 Nodes Communication  bound starting at 16 Nodes
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Weak Scaling on GPUs
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Weak Scaling on CPUs
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Dominant part in small domain scenarios

 The fraction of BC treatment and Communication and kernel time 
is shown

 Domains > 250x250x250 about 25% for 64 BlocksDomains  250x250x250  about  25% for 64  Blocks  
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From „Boltzmann” to„Lattice-Boltzmann“ and 
„Navier-Stokes“

Boltzmann Equation
Negelect volumetric forces

Bhatnagar-Gross-Krook-Approximation
Chapman-Enskog-Expansion

small Knudsen-Number

zy
k

Small Knudsen-Number
Small Mach-Number

Continuity Equation
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Small Mach Number

Discrete  Velocity SpaceConservation of momentum (j=1,2,3)

Velocity-discrete BGK-Eq.h 
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Chapman-Enskog-Expansion
Dicretizing Space and Time
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Dicretizing  Space and Time

Lattice-Boltzman-Equation (LBGK) (i=0,…,N-1)
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